

Trends in overweight: Encouragement for further action

Ken K. Ong

Professor of Paediatric Epidemiology

MRC Epidemiology Unit & Dept. Paediatrics, Institute of Metabolic Science, University of Cambridge, UK

Paediatric Endocrinologist & Clinical Lead for Childhood Obesity

Cambridge University Hospitals NHS Trust

Prevalence of overweight in preschool children (BMI or Wt-F-Ht > 85th centile at 4-5 years)

de Onis et al, *Public Health Nutrition* 2010 Sarah Maessen et al, *BMJ* 2023 <u>www.bmj.com/food4thought23</u> Prevalence of overweight in preschool children (BMI or Wt-F-Ht > 85th centile at 4-5 years)

Relative reductions:

- -15% in New Zealand
- -5% in Victoria (Australia)
- -3% in England (-7%, updated data)

-9% in Germany

de Onis et al, *Public Health Nutrition* 2010 Sarah Maessen et al, *BMJ* 2023 <u>www.bmj.com/food4thought23</u> Four stages of the obesity epidemic

Prevalence of overweight in children in England

National Child Measurement Programme, England, 2022/23 school year - NDRS (digital.nhs.uk) Prevalence of overweight in preschool children (BMI or Wt-F-Ht > 85th centile at 4-5 years)

Relative reductions:

- -15% in New Zealand
- -5% in Victoria (Australia)
- -3% in England (-7%, updated data)

-9% in Germany

de Onis et al, *Public Health Nutrition* 2010 Sarah Maessen et al, *BMJ* 2023 <u>www.bmj.com/food4thought23</u>

Reasons are likely mutifactorial

• Awareness of infancy and early childhood overweight \rightarrow dietary and policy changes

Rapid Infancy Weight Gain and Subsequent Obesity

Baird et al. *BMJ* 2005 Ong & Loos *Acta Paediatrica* 2006 Woo-Baidal et al. *Am J Prev Med* 2016 13 studies
10 studies
21 studies
+ve association in 45/46 studies

Formula-fed infants grow too rapidly

The WHO 2006 Growth Standard: defines optimal growth

Application of WHO Growth Standards in the UK. SACN 2007 Lakshman et al. Arch Dis Child. 2008 Formula milk composition and infant weight gain

Lower protein (1.77 vs. 2.9 g/100 kcal) \rightarrow Lower Weight gain and BMI

WEBER ET AL

Koletzko et al. *Am J Clin Nutr* 2009 Weber et al. *Am J Clin Nutr* 2014

Overnutrition in UK infants and young children

UK Scientific Advisory Committee on Nutrition (SACN) report

- 75% of infants (aged 4 to 18 months) have intakes that exceed the UK EAR for energy.
- The same proportion exceed the WHO growth standard median for weight.

Age	% participants above EAR		
	Boys	Girls	
12 to 18 months	88	88	
18 to 23 months	96	87	
24 to 35 months	69	69	
36 to 47 months	47	58	

EAR, Estimated average requirement

Based on DNSIYC & NDNS National Surveys Feeding in the 1st Year of Life, SACN report 2018 Feeding young children aged 1 to 5 years, SACN report, July 2023

RCTs of obesity prevention in infancy

- BabyMilk (Cambridge, UK) Arch Dis Child 2018
- NOURISH (Australia) *Pediatrics* 2015
- INSIGHT (USA) JAMA 2018
- POI (NZ) *AJCN* 2018
- EPOCH (Aus/NZ) Pediatr Obes 2020

Many others*

Baby	
Milk	Growth
Study	and Nutrition

Structural determinants of healthy weight in young children

- Environment e.g. space and facilities for outdoor play; infrastructure for active travel to school; density of take-away outlets;
- Social e.g. awareness of early childhood overweight; <u>maternal smoking in pregnancy</u>
- **Policy** e.g. provision of early years education and childcare; provision and promotion of healthy food and physical activity in early education settings
- **Commercial** e.g. reduction in protein content of infant milk formulas; reformulation of foods and drinks to reduce free sugars

Reductions in maternal smoking:

New Zealand: 16.2% to 13.1% from 2006 to 2018

Australia: 13.7% to 9.2% from 2010 to 2020

England: 15.8% to 9.1% from 2006/7 to 2021/22

Structural determinants of healthy weight in young children

- Environment e.g. space and facilities for outdoor play; infrastructure for active travel to school; density of take-away outlets;
- **Social** e.g. awareness of early childhood overweight; maternal smoking in pregnancy
- Policy e.g. <u>provision of early years education</u> and childcare; provision and promotion of <u>healthy food and</u> <u>physical activity in early education settings</u>
- **Commercial** e.g. reduction in protein content of infant milk formulas; reformulation of foods and drinks to reduce free sugars

New Zealand: Paid parental leave from 2002. 20 hours/wk early childhood education in 2000s Australia: increasing use of centre-based childcare over the last 10-15 years England: 15-30 hours/wk childcare for all 3- and 4-yearolds since 2010 Germany: Day Care Expansion Act increasingly implemented since 2005

Early years education/childcare:

Prevalence of overweight in preschool children (BMI or Wt-F-Ht > 85th centile at 4-5 years)

Relative reductions:

- -15% in New Zealand
- -5% in Victoria (Australia)
- -3% in England (-7%, updated data)
- -9% in Germany

de Onis et al, *Public Health Nutrition* 2010 Sarah Maessen et al, *BMJ* 2023 <u>www.bmj.com/food4thought23</u>

Summary – recent trends in preschool age overweight

1. Recent trends are encouraging!

MRC | Medical Research Council

- 2. The reasons are likely multifactorial *including: awareness, monitoring, attitudes* & *beliefs, diet, maternal smoking, early education*
- 3. Efforts needs to be maintained and strengthened
- 4. Ensure that all families benefit *including: low & middle income country settings*

FOOD FOR THOUGHT 2023

High but decreasing prevalence of overweight in preschool children: encouragement for further action

Sarah E Maessen, ^{1,2} Melanie Nichols, ³ Wayne Cutfield, ^{1,4} Shane A Norris, ^{5,6} Christoph Beger, ⁷ Ken K Ong⁸

Any lessons for older children & adults?

- 1. **Optimism** increasing trends are not inevitable!
- 2. Need for *Multifactorial* changes e.g. awareness, attitudes & beliefs, diet, monitoring, changes to the physical & nutritional environments
- 3. Need for interventions that require *Low Individual Agency*

Why Are Some Population Interventions for Diet and Obesity More Equitable and Effective Than Others? The Role of Individual Agency

Jean Adams M, Oliver Mytton, Martin White, Pablo Monsivais

Published: April 5, 2016 • https://doi.org/10.1371/journal.pmed.1001990

Agency vs. Structure

- What determines an individuals behavior?
- Agency-making individual choices based on free-will
- Structure-cultural and structural influences operate in the decision making process
 - How society is organized
 - Society is patterned

Why Are Some Population Interventions for Diet and Obesity More Equitable and Effective Than Others? The Role of Individual Agency

Jean Adams , Oliver Mytton, Martin White, Pablo Monsivais

Published: April 5, 2016 • https://doi.org/10.1371/journal.pmed.1001990

The **UK Soft Drinks Industry Levy**– a tiered tax on soft drinks (April 2018) – was associated with:

- a) Extensive Reformulation: 34% fewer eligible drinks (>5g/100 ml sugar)
- **b)** Less purchased sugar from soft drinks: by 8g (3%) per household/week; larger effects in households with children and lower incomes
- **c)** Less consumed total free sugar: in adults 11g (20%) less per day and in children 5g (10%) less
- **d)** Lower obesity prevalence by 5,234 (8%) cases/year in Year 6 girls, especially in the most deprived areas
- e) Fewer children admitted to hospital for tooth extractions by 5638 (12%) per year
- f) Fewer children admitted to hospital for asthma by 21% per year
- g) Improved health: 200,000 QALYs gained and £174m lower healthcare costs
- h) No long-lasting financial effects on companies

- 1. **Optimism** increasing trends are not inevitable!
- 2. Need for *Multifactorial* changes
- 3. Need for *Low Agency* interventions, e.g.
 - Further Reformulation of foods & drinks (e.g. *lower free sugars, energy content*)
 - **Restrictions on the marketing** of unhealthy foods
 - Price changes
 - **Restrictions on the availability** of unhealthy foods and food outlets

Why Are Some Population Interventions for Diet and Obesity <u>More Equitable</u> and Effective Than Others? The Role of Individual Agency

Jean Adams , Oliver Mytton, Martin White, Pablo Monsivais

Published: April 5, 2016 • https://doi.org/10.1371/journal.pmed.1001990

Prevalence of obesity in Reception age children in England, by Deprivation

* Figures for 2020/21 are based on weighted data, see Methodology and Data Quality section in 2020/21 report for more information. For more information: Table 6e National Child Measurement Programme, England, 2021/22 School Year

> National Child Measurement Programme, England, 2021/22 school year - NDRS (digital.nhs.uk)

Larger absolute reductions in the most deprived areas & in Pacific ethnicity children New Zealand B4 School Check (B4SC) data 2011-18

Daniels L et al. International Journal of Obesity 2022

Vision Mātauranga

Engaged Treaty	Minimum Cultural	Māori Vision	Māori Authority over
Relationships	Competencies	Mātauranga Assessors	Mātauranga Māori
Activity Mapping	Vision Mātauranga	Mātauranga Māori =	Pro-active Māori
	Assessment Standards	Science Excellence	Workforce Development

Rauika Māngai. (2020). A Guide to Vision Mātauranga: Lessons from Māori Voices in the New Zealand Science Sector.

Population AND Targeted high risk (precision) prevention

Risk intensity

ROSE'S STRATEGY OF PREVENTIVE MEDICINE

Heritability of BMI: a review of twins studies

Elks et al. Frontiers in Endocrinology 2012

Variation in the Heritability of Child Body Mass Index by Obesogenic Home Environment

Stephanie Schrempft, PhD; Cornelia H. M. van Jaarsveld, PhD; Abigail Fisher, PhD; Moritz Herle, PhD; Andrea D. Smith, PhD; Alison Fildes, PhD; Clare H. Llewellyn, PhD

Heritability of BMI at mean age 4.1 years

- Was much higher in *obesogenic households** **86%**
- than in *low risk households** **34%**

*Assessed by parent-reported food, physical activity, and media influences in the home

Appetite & Satiety signaling in the hypothalamus

Wide range of appetite traits in young children

The BabyMilk intervention reduced formula milk intakes (n=669)

Raj Lakshman et al, *Arch Dis Child* 2018

RCTs of obesity prevention in infancy

- BabyMilk (Cambridge, UK) Arch Dis Child 2018
- NOURISH (Australia) *Pediatrics* 2015
- INSIGHT (USA) *JAMA* 2018
- POI (NZ) *AJCN* 2018
- EPOCH (Aus/NZ) Pediatr Obes 2020

Most are based on 'Responsive Feeding' principles:

"feeding practices that encourage the child to eat in response to physiological and developmental needs, which encourage self-regulation in eating and support cognitive, emotional and social development"

Trends in overweight: Encouragement for further action

Ken K. Ong

Professor of Paediatric Epidemiology

MRC Epidemiology Unit & Dept. Paediatrics, Institute of Metabolic Science, University of Cambridge, UK

Paediatric Endocrinologist & Clinical Lead for Childhood Obesity

Cambridge University Hospitals NHS Trust

Institute of Metabolic Science

Acknowledgements

BMJ co-authors

Sarah Maessen, A Better Start, Auckland Melanie Nichols, Deakin University, Australia Wayne Cutfield, A Better Start, Auckland Shane Norris, Univ Witwatersrand, South Africa Christoph Beger, Leipzig University, Germany,

Institute of Metabolic Science

- MRC Epidemiology Unit
- & Metabolic Research Laboratories John Perry Felix Day Raj Lakshman Steve O'Rahilly Sadaf Farooqi

BabyMilk Study Team

Funding

Medical Research Council, UK Wellcome Trust, UK